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Abstract

The notion of Lipschitz stability of impulsive systems of differential equations (DEs)
was introduced. In this paper, we will extend the notion of eventual stability to im-
pulsive systems of DEs and extend the notion of Lipschitz stability of impulsive systems
of DEs to a new type of stability called eventual Lipschitz stability. Some criteria and
results are given. Our technique depends on Liapunov’s direct method and comparison
principle.
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1. Introduction

The qualitative properties in the mathematical theory of impulsive systems
of differential equations have been very important, of interest and developed by
a large number of mathematicians, see [1-3,6], and their studies have attracted
much attention. Furthermore they have been successful in different approaches
based on Liapunov’s direct method and comparison technique (see [5]). In
recent years the study of such systems has been very intensive (see the mono-
graphs [1-3,6], and their bibliographies).
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Lipschitz stability notion is extended to impulsive systems of differential
equations by Kulev and Bainov [2,3]. The notion of eventual stability was
introduced for ordinary differential equations (see [4]).

Our purpose of this paper is to extend the notion of eventual stability to
impulsive systems of differential equations and extend the notion of Lipschitz
stability of [2] to a new type of stability of impulsive systems, namely eventual
Lipschitz stability. These notions will be studied for the perturbed systems with
bounded perturbed function. These notions lie somewhere between Lipschitz
stability of [2] on one side and eventual stability on the other side. Furthermore
the notion of eventual Lipschitz stability implies both the notions of eventual
stability and Lipschitz stability.

Let R"-be the n-dimensional Euclidean real space, and

S(p) = {x e R": |lx| < p,p > 0}

The following definitions will be needed.

Definition 1.1 (Vasundhara, 1993 [6]). Let 0<ty < t; <trb < --- <t < ---,and
ty = o0 as k — oo. Then we say that F € PC[RT x R",R"] if F: [t_1,%] X
R" — R™ is a continuous function in [t;_1,t] x R" and for every x € R"

Lim(t,y)a(t;r,x)F(t)y) = F(t;,x)

exists for k =1,2,...

Definition 1.2 (Vasundhara, 1993 [6]). We say that V € ¥, if V € PC[R" x S(p),
R*], V(¢t,x) is locally Lipschitzian in x for (¢,x) € [t;_1,4] X S(p).

Definition 1.3 (Vasundhara, 1993 [6]). A function ¢(r) is said to belong to the
class X if ¢(r) € C[(0,p),R*], $(0) = 0 and ¢(r) is strictly monotone increasing
n r.

Consider the impulsive systems

V=f(ty),
Ay |f:tk:1k(y)’ (11)
y(to +0) =xo

and
x' = f(t,x)+ h(t,x),

Ax |t:tk: Ik(x) +Jk(x), (12)
x(lo + 0) = X0,

where f,h € PCIRT™ x R\, R"|, I;,J; :R" > R", 0<t)y <t <th <--- <t <+,
and #, — oo as k — oo.
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Going through [6], we define a Liapunov function ¥ € PC[R" x S(p),R"],
and for any fixed ¢ > ¢y, the function

D_V(s,y)(t,s,x) = Lims_, + inf (%) [V(s+ h,y(t,s + h,x + Oh(s,x)))

= V(s,»(t,s,%))], (1.3)

for tp < s<t, s # t, x € S(p), and as in [4], we define the function
1
D"V (t,x) = Lims_ + sups [V(t+,x+0f) — V(t,x)].

The following assumption will be needed:

(Hy) The solutions y(¢,%y,x0) and x(z,%,x) of (1.1) and (1.2) exist for all
t =ty = 1, unique, continuous with the same initial values and |y(¢,%,xo)]l,
||x(¢, 20, x0)|| are locally Lipschitzian in x,.

(Hy) A(t,x) is a bounded function.

Now, we state the results of [5,6] without their proofs. The following
comparison shows the results of [6], which is an important tool for relating the
solutions of (1.2) to the solution (1.1).

Theorem 1.1. Let the hypothesis (H,) be satisfied. Suppose further that V €V,
and
(i) For ty < s<t, s # t, and x € S(p),

D_V(s,y)(t,s,x) < g(s, V(s,p(¢,8,x))). (1.4)
(ii) There exists a py = py(p) > 0 such that ||x|| < py = |Ix — L(x)|| < p, and
V(t;,y(t, t/:rvx(tk) + ]k(x(tk)))) < lpk(V(tkvy(t’ tkax(tk))))7 (1'5)

where W, : Rt — R are nondecreasing functions for all k.
(i) g € PCIR" x R*,R] and the maximal solution r(t) = r(t,ty,x0) of the scalar
impulsive differential equation
u/:g<tau)a t#tkv
u(ty +0) = Ge(u(t), (1.6)
u(t0+0) =uy =0
exists for t =t Then if x(¢t) =x(t,to,x0) is any solution of (1.2) and
V(ts,y(t, t5,x0)) <ug, we get

V(t,x(t, tg,x0)) <r(t, to,%0), = 1o (1.7)



108 A.A. Soliman | Appl. Math. Comput. 133 (2002) 105-117
Lemma 1.1 (Lakshmikantham, 1989 [5]). Consider
u =p()pu), t#1u,

W () = Ge(u(t)), (1.8)
u(to) = Uy = 07

where p € CI[RT,R"], ¢, Gi € K, and suppose that there exists py > 0 such that for
every a € (0, p],

/ (s)d /Gk(a) & o, k=12 (1.9)
s)ds < —— <0, =1,2,... .
. . B0)

Then the zero solution of (1.8) is stable.

The following definitions will be needed in the sequel.
Definition 1.4 (Bainov and Simeonov, 1989 [1]). The zero solution of (1.1) is
said to be uniformly stable if for every ¢ > 0, t, € R", ty = 0 such that

[Ixoll <6 = |Ix(t,t0,%0)|| <€, t= 1.

Definition 1.5 (Kulev and Bainov, 1993 [2]). The zero solution of (1.1) is said to
be asymptotically in variation if for t = t; = 0, there exists a D > 0 such that

t
/ 1(t,9)]|ds <D
to
and

S (e n+0)| <D.

to <t <t

The following definitions are somewhat new and related with those of [2,4].

Definition 1.6. The zero solution of the system (1.1) is said to be uniformly
eventually Lipschitz stable if for e > 0, there exist M > 0, 6(¢) > 0, and 7(e) > 0
such that |jxo]| <0, xo € R”, implies ||x(¢,#,xo)|| < M|xol|, t = to = 7(€). Any
eventual Lipschitz stability notions can be similarly defined.

Definition 1.7. The zero solution of the system (1.1) is said to be uniformly
eventually stable if for e > 0, there exist M > 0, 6(¢) > 0, and t(¢) > 0 such that

Ixoll <0 = llx(z t0,%0)[ €, £ =10 = 2(e), x0 €R".
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Definition 1.8. The zero solution of (1.1) is said to be uniformly eventually
asymptotically stable if it is uniformly eventually stable, and for ¢ > 0, there
exist d(e) > 0, 7(¢), and T(e) > 0 such that for x, € R”

ol <0 = |Ix(t,t0,x0)|| <€, ¢ =ty + T(e) and 7y = t(e).

Any eventually stability notions can be similarly defined.

Remark 1.1. For Definitions 1.6 and 1.7, if the zero solution of (1.1) is uni-
formly eventually Lipschitz stable, then it is uniformly Lipschitz stable and is
uniformly eventually stable.

Consider the impulsive variational systems of (1.1)

y/:fx(tao)a t#tlw
AY |y = 5(0)y, (1.10)
(o +0) =y

and
7 = fi(t,x(t, t0,%0))z, t# 4
Az |y = L (x(t, t0, %0) )z (1.11)
z(ty + 0) = z.

Furthermore, we consider the linear impulsive system

X =A(t)x, t#1t,
Ax | =, = Byx, (1.12)

X(fo —|— O) = X0,

where f, = (0f/0x), I;(x) = (0, /0x) and x(¢,1,x,) be any solution of (1.1)
satisfying the initial condition x(z, fy, xy) = xo, and A is an n X n matrix defined
in J, and B, k =1,2,..., are constant n X n matrices.

The fundamental matrix solution ®(¢,1y,x0) of the system (1.11) is defined
by

ax(ta t(),X())

¢(t7 ZL()vxo) - ax
0

, tEh (1.13)

(see [5, Theorem 2.4.1]).
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The fundamental matrix solution w(¢,s) of the system (1.12) is defined by

u(t,s),
lo1 <85 <t<t,
u<t7 tk)(E+Bk)u(tk7S)7
b1 <8 <t <<,
1
u(s, tir) [ [ (E + BigjJultis s tirj—1) (E + Bou(ty, ),
o1 <s<tp < e < b < E Hepig,

w(t,s) = (1.14)

where E is the unit #n x n matrix, and u(¢,s) is the fundamental matrix solution
of the system (1.12) without impulses.

2. Main results

In this section, we discuss the notions of eventual stability and Lipschitz
stability of impulsive systems of differential equations (1.1) and (1.2).

Theorem 2.1. Let the hypothesis of Theorem 1.1 and the assumption (H,) be
satisfied. Assume further that

(iv) f(¢,0) = h(£,0) = g(¢,0) = 0, and I,(0) = J(0) = ¥, (0) for all k.

(v) bllx|| < V(t,x) <alx|, a,b € X for (t,x) € R* x S(p).

If the zero solution of (1.1) is uniformly eventually stable, and the zero solution of
(1.6) is uniformly eventually asymptotically stable, then the zero solution of (1.2)
is uniformly eventually asymptotically stable.

Proof. Let y(¢,,x) be a solution of (1.1) with the initial values xo. From the
hypothesis (H;) and since the zero solution of (1.1) is uniformly eventually
stable for € > 0, given 0,(e) > 0, there exists dy = dy(e) > 0 such that

||)C0||<(30 = y(t7103x0)||<52 (21)

fort =1t = = t(e). Let 0 < ep* = min(p,, p) be given, t, € R*. Since the zero
solution of (1.6) is uniformly eventually stable, given b(e) > 0, t, € R, there
exist 0; = d;(e) > 0, and 7(¢) > 0 such that

0<uyp<d = u(t,to,up) < b(e). (2.2)

Let the solutions y(¢, #, xy) and x(¢, o, xy) of (1.1) and (1.2) with the same initial
values xg, respectively, by using the variation of constant formula, the solutions
of (1.1) and (1.2) with the same initial values are related by

t
X(t, t07x0) :y(ta t07x0)+/ ¢(t7S,X(S, to,Xo))dS,
tp

where ¢(¢,1,x) is the fundamental matrix solution of (1.11)
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[lx(z, 20, x0) || = 11y (2, f0, x0)

+ / 16t 5,x(5, f0,x0) Vs, (5, 0, 30| d. (2.3)

From (2.1), inequality (2.3) becomes

t
[lx(z, 20, o) | :6+/ ¢ (2,5,x(s, 10, %0) ) (s, X(s, 20, %0)) || ds.
fy

By using Bellman’s inequality, we get
t

[[x(, t0,x0)|| = € +/ P(s)ds < €
fo

whenever ||xo|| < do, ¢ =ty = t(€). Therefore the zero solution of (1.2) is uni-
formly eventually stable.

Now, to prove that the zero solution of (1.2) is uniformly eventually as-
ymptotically stable, it is required to prove that ||xy|| < dp which implies

lIx(#,t0,x0)|| <€, t=to+T, t=t=1(e), T>0, (2.4)

where x(¢, , x9) is any solution of (1.2).
If this is not true, then there exists t* > 7, > 7, such that ||x,|| < &, implies

Ix(£)|| =€ and |x(¢)]| <e forty <t <t<t.
Then ||x(#)|| < ep, and hence by condition (ii) we get
Xt = llx(te) + L (1) ]| < p-
Hence, we can find £ such that # < £ > ¢* satisfying
e<x(f) < p, (2.5)
thus for # <t <2, t) > (), x(t) < p, and therefore by Theorem 1.1, we get
V(t,x(t,t9,x0)) < r(t, 10, y(t, o, X0)). (2.6)

Choose 3, = a~'(d,), thus by using (2.1), (2.2), (2.5), (2.6), and condition (v),
we obtain

b(E) g be(tO? to,X())” g V(toax(toa [()ax())) gr(tovt(h V([07y(t0,lO,X())))
<r(t()?t()?aHy(ththx())H) gr(l‘o7t0aa(52)) gr(to7t05 51) < b(€)

This is a contradiction and then the zero solution of (2.2) is uniformly even-
tually stable.

Now, let the zero solution of (1.6) be uniformly eventually asymptotically
stable. Therefore given b(e) > 0, #, € R* and 7y > t(e€), there exist §; > 0, and
T(e) > 0 such that uy < o, implies
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u(t to,up) <ble), t=t0+7T, t=1(e). (2.7

From (2.3), by choosing € = p/2, it follows that: Choose é = min[dy, dy], and
let ||xo|| < .
From our previous arguments and condition (v) it yields
b||(x(t7 t(),)Co)) || < V(t7x(t7 10>x0)) < r(t7 to, V(ﬁY(ﬁ t(),.X()))) < i"(t, fo, a(52))
< }"(t, to, 51) < b(é)

fort =ty + T, ty = t(¢). Hence the zero solution of (1.2) is uniformly eventually
asymptotically stable, and the proof is completed. [

Theorem 2.2. Let there exist a function V € C[RY x S(p),R*], and V(¢,0) =0,
such that
(vi) DTV (t,x) < g(t,V(t,x)),
Vi) 7 (62) = V(e )| <Ll = vl > 1,
(viti) bx]| < ¥ (1,%), b () < g w)x,
where q(o) = 1, o = 1, for some function q,b € k.
If the zero solution of (1.6) is uniformly eventually Lipschitz stable, then so is
the zero solution of (1.1).

Proof. Let the zero solution of (1.6) be uniformly eventually Lipschitz stable.
Then for every € >0, 5, >0, 0 < e < p, p > 0, there exist M > 1, 6; > 0, and
7(€) > 0 such that

0<uy <di(e) = u(t,ty,ug) < Mug, t =1ty = 1(e). (2.8)
By applying Theorem 3.1.1 of [5], we get
V(t,x(t,to,x0)) <r(t,to, up), (2.9)
where r(t, ty, up) is the maximal solution of (1.6). Choose
V (ty,x0) = up. (2.10)
From condition (viii), we get
bllx(t, 1o, x0) || < V' (1, x0) < r(t, to, uo)
= Muy = MV (ty,x0) = ML||x0]|
= Nllxol|, N =ML,
thus
[x(2, t0,2%0) | < 7'V xo
Hence

[1x(2, 20, x0) | < llxollg(V) = Zlixoll, 2= 10 = 7(e),



A.A. Soliman | Appl. Math. Comput. 133 (2002) 105-117 113

where Z = g(N), Z< 1 is Lipschitzain constant. Thus, we have
[1x(#, 10, %0)[| < Zllxoll, - 2= 20 = 7(e),

provided that ||xo]| < d;(e).
Hence the zero solution of (1.1) is uniformly eventually Lipschitz stable. [

Theorem 2.3. If the zero solution of (1.1) is uniformly eventually Lipschitz stable
such that

12,5, ) (s, )| < 7(s)lx]l, /ttv(S) ds < o0, (2.11)

where ¢(t,s,x) is the fundamental matrix solution of (1.11), then the zero solution
of (1.2) is uniformly eventually Lipschitz stable.

Proof. Since the zero solution of (1.1) is uniformly eventually Lipschitz stable.
Then for every € > 0, t, € J, there exist M > 1, (¢), and t(e) > 0 such that

x(t, o, x0) || < Mxoll, £ to > te, (2.12)

where ||xo]| <. Let y(¢, t,x0) and x(¢, ¢y, xy) be the solutions of (1.1) and (1.2)
with the same initial values x,, respectively. By using the variation of constant

formula, the solutions of (1.1) and (1.2) with the same initial values are related
by

t
X(l‘, t07x0) :y(ta t(),X()) +/ (,b(t,S,X(S, to,X()))h(S,)C(S7t(),X(]))dS.
fo

The rest of the proof is in the same line of the proof of Theorem 2.1. So, it is
omitted. [

The following definition will be needed.

Definition 2.1. The zero solution of the system (1.1) is said to be asymptotically
stable in variation if

t
/ (s, t0,x0)ds <M (2.13)
fo

for every t =0, and all ¢ > #,, where ¢(z,%),x) is the fundamental matrix
solution of (1.11) with ¢(ty, t0,x0) = E.

Theorem 2.4. Suppose the zero solution of (1.1) is uniformly eventually Lipschitz
stable, and the zero solution of (1.2) is uniformly asymptotically stable in vari-
ation such that

([72(s, x(¢, 20, x0)) || < [|xo]- (2.14)
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Then the zero solution of (1.2) is uniformly eventually Lipschitz stable.

Proof. As in Theorem 2.3, we have

[]x(2, 20, x0) |

r (2.15)
= [|»(#, to, x0) | +/ (2, s,x(s, t0,%0) ) (s, x(s, 10, X0) ) | ds.

Since the zero solution of (1.2) is uniformly asymptotically stable in variation,
we get

t
/ O(t,8,x(s,t9,x0))ds <M (2.16)
to
and since the zero solution of (1.1) is uniformly eventually Lipschitz stable, we
have
92, 20, x0)[| < M|xoll, (2.17)
where ||xo|| <0, t =ty = ().

From (2.14)—(2.16), inequality (2.15) becomes

t
||x(t’ t0>x0)|| = MHXOH + onll/ qu(t,s,x(s,to,xo))Hds
fo
<M |Jxol| + M|lxo|| = 2M [xo| = N*{lxol,
where N* = 2M is a Lipschitz constant. Then

[lx(2, £, %0) || < N* 1o,

where ||xo]| < J, ¢ =t > t(e). Hence the zero solution of (1.2) is uniformly
eventually Lipschitz stable. [

Theorem 2.5. Let the zero solution of (1.6) be uniformly eventually Lipschitz
stable, and g(t,u) € C[J x R*,R"], and g(¢,0) = 0, such that

Ig(t,u) = g(t,v)[| <Lllu—vl|, L>1 (2.18)
and

[l 4 o (&, x) || < [|x[| + og (2, [|x[]) + €(5) (2.19)

for some positive constant L, and (t,x) € J x 6(p), and for sufficiently small

0 > 0, with
Lim(jﬂo @ =0.

Then the zero solution of (1.1) is uniformly eventually Lipschitz stable.
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Proof. Let V(¢,x) = x, and xy = uy. Then it follows from (2.19) that

[lx+ 2+ 0l = [Ix(0)]l
B

. 1
< Limg o5 [+ 14 3] + dg(t, (Ol + €(3) + I+ 3/ (12|
<t V). (2.20)

It follows from Theorem 3.1.1 of [5] that

V' = Lim(sﬂ()

V(tvx(ta t0>x0)) g }"(l, to, uO)
and thus
|l (2, 20, x0)|| < V (2, x(2, 20, %0)) < #(¢, 2o, o), (2.21)

where r(¢,t,uy) is the maximal solution of (1.6) through (¢, uo) = (to, ||xo||)-
Since the zero solution of (1.6) is uniformly eventually Lipschitz stable, there
exists o > 0, d(e) > 0, and 7(e) > 0 such that uy = |up| < 6 implies

|u(t, to, uo)| = u(t, to, [Ixo]|) < oo -

By using (2.20), we obtain
(10, %0) | < allxoll, £33 7,

whenever ||xo|| <9, i.e., for e > 0, there exist M > 0, and 6 > 0 such that
[Ixoll <O, x0 €R" = ||x(¢,80,%0)|| < M|xo]|, =12 > 0.

Then the zero solution of (1.1) is uniformly Lipschitz stable, and the proof is
completed. O

3. Example
Now, we shall illustrate the results obtained by some examples:

Example 1. Consider the impulsive system

V=ey, t#u,
vt =ay(t), 0<c<l,

(3.1)

where ¢;’s are such that [];7, ¢x = ¢y € (0, 1]. Suppose that there exists a p, > 0
such that the moments of impulses 1 — £, and the impulses ¢;’s are related by

e*fk _ e*tk—l g

(3.2)
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The solutions of (3.1) are given by

y(ta 137)60)
Hto<t/<t CjXo

= 1 +xo(€7” — efto) +c (e—tz — efn) 4+ 4 Ht0<[/<t Cj(e—t _ e*t")

for t = ty, t € (ty,41), and the fundamental matrix solution of the corre-
sponding variational equation is

é(t, 15 ,x0)

Hr0<t,<t ¢
3.

1 —|—x0(e*” _ e,m) + Cl(e*’Z _ e*n) + .-+ H[O<t/<m/_(e—t _ e*t")

Choosing V' (s,x) = 2cox?, we get for s # #;

2co)? (¢
DV (s,3(t,5,x)) = ?[y(scx) <(t,5, 0] < [V (s,9(t, 5,))] 2
to<tj<t~J

and

V(v 6], x(60) = V(e (6,60, Bex(65))) < 2co iV (16, 98, 11, x(1))).
The corresponding comparison equation is

/

3
u =u, t#tlm

u(th) = quu(n), q; = Zcoﬁi, (3.3)
u(ty) =up = 0.

Assume that there exists p, > 0 such that the impulses g,’s and the moments of
impulses #;’s are such that

2(1 - ‘Ik)
qkpy”

ol — 4 < (3.4)

Let the zero solution of (3.1) be eventually stable. This follows from (3.2) and
(3.4) which implies

l—1 qi(a) ds
/ e ds + / — <0
t a S(E)

correspondingly, by using Lemma 1.1. Then from Theorem 2.1, we obtain the
eventual stability of the zero solution of (3.1).
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